三角换元法之探
又一日,学堂之内,戴浩文再开新篇。
戴浩文缓声道:“今日为师要与尔等讲授另一奇妙之法,名曰三角换元法。”
众学子皆屏气凝神,静待下文。
李华拱手问道:“先生,此三角换元法又是何意?”
戴浩文微笑答道:“且看,若有方程x2+y2=1,吾等可设x=sθ,y=sθ,此即为三角换元。”
张明面露疑惑:“先生,为何如此设之?”
戴浩文耐心解释道:“诸君可知三角函数之特性?s2θ+s2θ=1,恰与吾等所给方程相符。如此设之,可使求解之路径明晰。”
王强问道:“那若方程为x2+4y2=4,又当如何?”
戴浩文道:“此时,可设x=2sθ,y=sθ。如此,原方程便化为4s2θ+4s2θ=4,正合题意。”
赵婷轻声道:“先生,此设颇有巧妙之处。”
戴浩文点头道:“然也。再看若有式子√(1-x2),吾等设x=sθ,则此式可化为√(1-s2θ)=sθ。”
李华思索片刻道:“先生,此换元法于解题有何妙处?”
戴浩文笑曰:“其妙处众多。若求函数之最值,或化简复杂之式,皆能大显身手。譬如,求函数x+√(1-x2)之值域。”
众学子纷纷低头思索。
戴浩文见状,提示道:“已设x=sθ,代入可得sθ+sθ。诸君可还记得两角和之公式?”
张明恍然道:“先生,吾记得,sθ+sθ=√2s(θ+π4)。”
戴浩文赞道:“善!由此可知其值域为[-√2,√2]。”
王强又问:“先生,若式中含分式,又当如何?”
戴浩文道:“莫急,若有式子(1-x2)(1+x2),设x=tanθ,则可化简求解。”
赵婷道:“先生,此中计算恐有繁难之处。”
戴浩文道:“不错,然只要步步为营,细心推之,必能解出。”
说罢,戴浩文在黑板上详细演示计算过程。
如此讲学许久,学子们对三角换元法初窥门径。
戴浩文又道:“今留数题,尔等课后细细思索。若有不明,来日再论。”
学子们领命而去,皆欲深研此奇妙之法。
数日之后,众学子再次齐聚学堂。
戴浩文扫视众人,缓声问道:“前几日所授三角换元法,尔等可有研习?”
学子们纷纷点头,李华率先说道:“先生,学生课后反复思索,略有心得,然仍有诸多不明之处。”
戴浩文微笑道:“但说无妨。”
李华拱手道:“若方程为9x2+16y2=144,该如何进行三角换元?”
戴浩文答道:“可设x=4sθ,y=3sθ。如此一来,原方程化为16s2θ+9s2θ=144,与原式契合。”
你微笑时很美 七三角之蓝雪传说 反派魔王绝不死于开场CG! 钻石婚约之宠妻上瘾 在修真文明的悠闲生活 跨越千年的爱恋之生死情缘 遥看长生 反派:我的手下皆为人间绝色! 你管这叫诈骗短信? 霸宠甜甜圈:夜少,别乱撩 最强神将 穿越民国:谍影入局 甜宠进行时:霍少请克制 源灵浪人 伤害反转系统,喝敌敌畏都能变强 愿卿度朝暮,为君枕山河 无极灵剑 禁忌武魂 芜荒之神 天道有缺
何谢绑定了一个人设反差系统,只要做出与自身人设反差强烈的行为,或完成系统发布的极端人设任务,就能获得各种奖励。何谢柳姨,教育孩子,棍棒教育不可取。妹妹就是就是!(哥哥对我最好啦!)系统叮!塑造严厉哥哥人设,奖励萌萌哒的九尾妖狐一只。何谢棍来!!!(反差值100!)妹妹???妹妹嗷嗷嗷嗷!(杀猪般的哭喊声!)本书又名结仇吗?你讨厌的样子我都有!恋爱吗?你喜欢的样子我也都有!精神错乱了怎么办?我需要被电击治疗一下!...
...
嫡长子的日常有权衡有取舍活着,不仅仅为自己活着该承担的责任必须要去承担家族,不止是荣耀的延续在其位做其事只求无愧于心贾家,依旧是煊赫的贾家来自贾赦大老爷的自言自语一句话的简介贾赦的生活日常。拒绝扒榜...
奇怪的声音不断响起,忍无可忍的洛羽在不堪纠缠的情况下意外绑定了一个炮灰逆袭系统,从此踏上了不断穿梭于各个位面的道路。不管你是家暴凤凰男还是矫揉造作白莲花,亦或是口蜜腹剑黑心莲,且等我手撕逆袭。...
任务接连失败,系统也罢工联系不上,勤勤恳恳的苏眷被迫躺平当咸鱼。无聊时,只能看看周围人的八卦大戏。苏眷快活啊。苏老爷纳了一房美妾,却被别人插了一脚!哟,屁股都打开花了。礼部侍郎都要七十的人了,还在外头养外室,啧啧啧。人到老年,晚节不保哟。户部尚书的几个儿子女儿竟然都不是自己亲生的欸,原来大家都知道了吗?谢小爷整日寻欢,其实是在努力用这些事遮掩自己有隐疾的事,可怜啊。谢小爷???就在苏眷觉得这种咸鱼的日子顺风顺水,还挺不错的时候,她惊恐的发现,自己周围的人个个都竖起了耳朵,好像都能听见她的心声苏眷靠,这局又废了!...
...